掃描電鏡應(yīng)用廣泛
成像和顯微表征技術(shù)使研究人員能夠獲得納米和微米尺度與其化學和電子特性相關(guān)的特征, 這反過來體現(xiàn)了PSC的性能。通過顯微表征技術(shù)也有助于解釋鈣鈦礦材料的性質(zhì),包括化學和電學性質(zhì)以及它們與太陽能電池性能的關(guān)系。
電子顯微鏡是PSC表征中廣泛使用的表征技術(shù)之一。主要用于材料的形態(tài)表征,并且在了解 PSC的高光電轉(zhuǎn)化效率方面發(fā)揮著重要作用。電鏡技術(shù)常見的用途是分析和改善器件架構(gòu),例如,測量 層的厚度和表面覆蓋率。其中,掃描電鏡(SEM)是一種用途廣泛的強大工具,可以獲得薄膜的表面圖像,在PSC的性能提升中發(fā)揮了重要作用??梢詼y量的主要參數(shù)有如下幾種:表面覆蓋率、介孔層填充、 晶體尺寸和層厚度測量,這些都對太陽能電池的性能至關(guān)重要。
二次電子和背散射電子信號
為了對薄膜表面進行成像,包括不同層(the electron and hole selective layers )以及鈣鈦礦薄膜層,通常不需要表面金屬化,因為這些層通常沉積在導電襯底上,如氟摻雜氧化錫(FTO)。但前提是SEM拍攝時所選取的電壓不能過高,否則會掩蓋薄膜表面的細節(jié),這對電鏡的光路系統(tǒng)有著非常嚴格的要求。
賽默飛超高分辨場發(fā)射掃描電鏡Apreo 2兼具低電壓高質(zhì)量成像和多功能分析性能于一體,采用雙引擎技術(shù),超低電壓下可直接分析鈣鈦礦薄膜,且無需做金屬化處理。其中,主要用到的是二次電子和背散射電子信號。
二次電子SE是由非彈性碰撞產(chǎn)生的,它激發(fā)了材料中的電子,使它們有足夠的能量逃逸。但是這些電子只能從幾納米的層中離開樣品。因此,使用低電壓可以更好的獲得高分辨的二次電子圖像;背散射電子BSE是來自電子束的電子,通過與樣品的相互作用被彈性反射。BSE可以探測比SE更深的深度,因為它們具有更高的能量,并且在離開樣品的過程中受散射過程的影響較小。當然由于這個原因,BSE信號在高倍率下通常比 SE的空間分辨率要低。
圖1: 鈣鈦礦層的SEM圖像
掃描電鏡是了解不同溶液和沉積技術(shù)對鈣鈦礦層表面改善的重要工具。通過分析SEM顯微照片,可以優(yōu)化鈣鈦礦的制備方法,從而大大提高器件的性能。如圖1所示的鈣鈦礦層的SEM圖像,比較了常規(guī)自旋鍍膜法制備的MAPbI3層和在自旋過程中使用氯苯誘導快速結(jié)晶制備的MAPbI3層。結(jié)果顯示常規(guī)方法制備的鈣鈦礦層內(nèi)形成了較大的孔洞;但是通過溶劑誘導法則形成了覆蓋的均勻?qū)印?/span>
BSE模式獲取截面結(jié)構(gòu)
除了觀察表面形貌外,PSC的截面結(jié)構(gòu),對于材料制備的重現(xiàn)性也很重要。使用BSE模式來獲取器件橫截面的圖像,如圖2所示。通過材料對比的變化,孔隙可以清楚地識別出來。較暗的區(qū)域不包含鈣鈦礦中的Pb,因為鈣鈦礦的原子序數(shù)比Ti大,所以背散射電子攜帶的能量更多。同樣,也可以很容易地識別出空洞傳輸材料層(HTM)和Au層。
圖2:PSC的截面結(jié)構(gòu)
總之,掃描電鏡是一種強大的微觀表征技術(shù),但同時針對不同的材料和研究選擇適當?shù)碾婄R型號也是非常重要的。比如,鹵化鉛鈣鈦礦(LHPs)是一種軟材料,很容易被電子束損壞,誘導形成偽像,使微觀結(jié)構(gòu)表征變得困難。因此,需要結(jié)合低電壓和低電子劑量來獲得理想的結(jié)果。
圖3: Apreo 2場發(fā)射掃描電鏡拍攝的鈣鈦礦截面
賽默飛超高分辨場發(fā)射掃描電鏡Apreo 2,正是這樣一臺具備優(yōu)異的低電壓成像性能的掃描電鏡,是分析鈣鈦礦材料顯微結(jié)構(gòu)的利器!
賽默飛場發(fā)射掃描電鏡Apreo 2
參考資料:
[1] Hidalgo J , Castro-Mendez AF , Correa-Baena J P .Imaging and Mapping Characterization Tools for Perovskite Solar Cells[J].Advanced Energy Materials, 2019, 9(30):1900444.
版權(quán)所有 © 2024 北京歐波同光學技術(shù)有限公司 備案號:京ICP備17017767號-4 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap